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Assignment 2: Balanced Trees

This problem set explores red/black trees and augmented balanced binary search trees. We hope 
that this solidifies your understanding of these types of trees!

Working in Pairs

You are welcome to work on the problem sets either individually or in pairs. If you work in pairs,  
you should jointly submit a single assignment, which will be graded out of 22 points. If you work 
individually, the problem set will be graded out of 18 points, but we will not award extra credit if 
you earn more than 18 points.

Due Wednesday, April 16 at 2:15PM at the start of lecture.



 

Problem One: Red/Black Trees (8 Points)

This problem is a combination of theory questions and programming questions. The source code for the 
programming questions is available at  /usr/class/cs166/assignments/ps2/, but we have not in-
cluded a Makefile or a testing harness – we're leaving that up to you this time!

The particular representation of red/black trees we've included here saves space by packing the bit indi-
cating whether a node is red or black into the low-order bit of the left child pointer. This means that 
you'll have to do some masking before following the left pointer. Check the header file for more details.

We will test your code by compiling it in C99 mode (using the -std=c99 option to gcc) on the corn 
machines. To receive full credit, your code must compile with no warnings (we'll use the -Wall flag 
when grading, and we recommend you use it during development)  and your code should  be written 
clearly (e.g. well-commented and with clear variable names).

i. (4  Points)  Implement  the  is_red_black_tree function.  This  function  accepts  as  input  a 
pointer to the root of a binary tree annotated with color information and should return whether  
that tree is a red/black tree. You can assume that the input actually is a tree – that is, you can as-
sume there aren't any directed or undirected cycles, and you can assume that (except for the 
low-order bit of the left child pointer) all internal pointers are valid – but cannot make any as-
sumptions about the keys in the nodes or the node colors. To receive full credit, your implemen-
tation must run in time O(n). Please edit the comments before the is_red_black_tree function 
to include a brief writeup explaining why your code runs in time O(n).

ii. (4 Points) Implement the to_red_black_tree function. This function accepts as input a sorted 
array of integers and should return the root of a red/black tree containing precisely those inte-
gers. To receive full credit, your implementation must run in time O(n). Please  edit the com-
ments before the to_red_black_tree to include a brief writeup justifying why your code runs 
in time O(n). (Hint: The naïve algorithm of inserting all the nodes into an empty red-black tree  
doesn't run in time O(n) on all inputs.)



 

Problem Two: Flexible Sequences (6 Points)

There are many data structures that can be used to represent sequences of elements. Standard dynamic 
arrays allow for O(1) lookups, O(1) appends, but take time O(n) to insert elements at the front. Doubly-
linked lists allow for O(1) insertions at the front and end and can be concatenated in time O(1), but re-
quire O(n) for random access. In this problem, you'll design a data structure for sequences that supports 
a huge number of operations in time O(log n) each.

Design a data structure that stores a sequence of elements and supports all of the following operations 
in time O(log n):

• seq.insert(i, x), which inserts value x at position i.

• seq.delete(i), which removes the element at position i.

• seq.lookup(i), which returns the value of the element at position i.

• seq.set(i, x), which replaces the element at position i with the new value x.

• seq.size(), which returns the number of elements in seq.

• split(seq, i), which destructively modifies seq by splitting it into two sequences S  and ₁ S  con₂ -
sisting of the elements before position i and the elements at or after position i, respectively.

• concat(seq , seq₁ ₂), which destructively modifies seq  and ₁ seq  by appending all the elements in₂  
seq  to the end of ₂ seq .₁

We recommend building your structure out of a balanced binary search tree. That way, you can aug-
ment your sequences to store extra information, just as you can augment a normal balanced BST. In 
fact, on Monday's lecture, we'll use these structures to build up Euler tour trees by adding in a few extra 
augmentations.



 

Problem Three: Dynamic Maximum Overlap (8 Points)

(Based on a chapter exercise from CLRS.)

Given a set of half-open intervals I = { [s , ₁ t ), [₁ s , ₂ t ), …, [₂ sₙ, tₙ) }, the maximum overlap problem is 
the following: what is the maximum number of intervals that mutually overlap one another? For exam-
ple, given this set of intervals:

The answer would be 5, since at any point in time at most five intervals overlap one another (one such 
point in time is indicated above). The maximum overlap problem has applications to scheduling rooms 
for a conference or other large event – if the intervals represent the start and end times of all of the 
events, then the maximum overlap gives the minimum number of rooms necessary to schedule all of 
the events.

In the above picture, we've drawn a dotted line to indicate one of the “points of maximum overlap,” a 
time at which the maximum number of intervals overlap. You might find the following fact useful: for  
any nonempty set I of intervals, there is always a point of maximum overlap that occurs at the very start 
of one of the intervals.

i. (2 Points) Design an O(n log n)-time algorithm for the maximum overlap problem. (Hint: Treat  
the interval boundaries as “events.” Each interval start is a “+1” event, and each interval end  
is a “-1” event.)

In the dynamic maximum overlap problem, the set I is not given in advance. Instead,  the set I begins 
empty, and arbitrary intervals may be inserted and deleted from I at any time. At any time between in-
sertions and deletions, we can query to determine the maximum overlap of the set I.

ii. (6 Points) Design a data structure that supports these operations in the indicated time bounds: 

• dynmax.insert(s, t), which inserts the half-open interval [s, t) into the data structure. You 
can assume that the specific interval [s, t) is not already in the data structure. This opera-
tion should run in time O(log n).

• dynmax.delete(s,  t), which deletes the half-open interval [s,  t) from the data structure. 
You can assume that [s,  t)  is present in the data structure when this operation is per-
formed. This operation should run in time O(log n).

• dynmax.max-overlap(), which returns the maximum overlap of the intervals in the data 
structure. This operation should run in time O(1).


